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Introduction



GCP - Graph coloring problem

= Given an undirected graph G = (V, E)vertex set V, edge set E

= Legal coloring : partition {V4,..., Vi} of V, such that no
(vi,v2) € V; arein E.

= Objective : find a legal coloring S = {V4,..., Vik} with the
minimum number of colors k.

= x¢ (chromatic number of the graph) : minimum number of color
required to build a legal solution.
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GCP - Graph Coloring Problem

= Given an undirected graph G = (V, E), a (legal) coloring is a
partition {V4,..., Vi} of V into independent sets (Vi =1...k,
Yu,ve Vi: (u,v) ¢ E).

= Objective : find a coloring S = {V4, ..., Vik} of G with the
minimum number of colors k.

= Chromatic number of G (x¢) : the minimum number of colors to
color G.
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WVCP - Weighted Vertex Coloring Problem

= WVCP instance P = (G, w) defined by :
= agraph G = (V,E),
= a function w : V — N* assigning a strictly positive weight w(v) to
each vertex v.

= Objective : find a legal coloring S = {V4, ..., Vik} whose score
k o
f(S) => i maxycv, w(v) is minimum.
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= Example of application : scheduling on a Batch Machine with Job
Compatibilities.
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WVCP - Weighted Vertex Coloring Problem

= A WVCP instance is defined by a vertex-weighted graph (G, w) :

= G =(V,E) is an undirected graph

= w: Vi N*is the weight function

= Objective : find a coloring S = { V4,
score f(S) = Zﬁ;l max, ey, w(v).

..oy Vi} of G with a minimum
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= wvcp is NP-hard (wvcp=cep if w

is constant).

= Example of application : scheduling on a batch machine with job

compatibilities.
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State of the art on WVCP

Exact methods :

= 2-Phase [Malaguti et al., 2009] : generation of independent sets and

optimization

= MWSS [Cornaz et al., 2017] : Mixed Integer Linear Programming
Metaheuristics : (LS : local search)

= R-GRASP [Prais and Ribeiro, 2000] : Iterated Greedy Algorithm with LS

= AFISA [Sun et al., 2018] : LS with adaptive management of weights

= RedLS [Wang et al., 2020] : Reduction and LS with weights on edges

= ILS-TS [Nogueira et al., 2021] : Iterated LS with grenade operator

= DLMCOL [Goudet et al., 2022] : Memetic Algorithm with deep learning for

the crossover selection

= MCTS [Grelier et al., 2022, Grelier et al., 2023] : Monte Carlo Tree
Search with LS
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Vertex Reduction Rules and
Iterative Reduction Procedure



First atomic reduction rule R1 : improvement on the rule of

[Wang et al., 2020]

= Reduction rule RO [Wang et al., 2020] :

P N N N Y
(e ) () [ = I )

= Reduction rule R1 takes into account that u may have neighbors in
the clique C :
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First vertex reduction rule R1

= Given a clique C and u ¢ C, the reduction rule (RO) proposed by
[Wang et al., 2020] removes u if ...
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= Our reduction rule (R1) also takes into account that u may have

neighbors in C
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Second vertex reduction rule R2

= Second reduction rule (R2) adapted from a reduction operator
proposed by [Cheeseman et al., 1991] for GcP.
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Iterative reduction procedure

= Extract 1 clique of maximum weight per vertex using FastWClq
algorithm [Cai and Lin, 2016].

= Sort vertices by increasing order of weights and apply R1 and R2 on
each vertex.

= |terate until no vertex can be removed.

= When a solution is found for the reduced graph, it is possible to
obtain a solution of the same score for the original instance by
coloring each vertex of the list L of removed vertices with a greedy
algorithm in the reverse order of arrival in L.
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Impact of reductions on benchmark instances

instance |V|  density ‘ RO Rl RI1+R2 Iterated time(s)
DSJC125.1g 125 0.1 0 0 0 0 0.03
DSJC125.5g 125 0.5 0 0 0 0 0.26
DSJC125.9g 125 0.9 0 0 0 0 3.22
DSJR500.1 500 0.03 78 80 80 256 1.32
GEOM110 110 0.11 6 9 9 23 0.09
inithx.i.1 864 0.05 | 469 574 596 683 19.45
le450_15a 450 0.08 | 28 28 28 30 1.38
le450_25b 450 0.08 90 90 90 105 2.26
mulsol.i.5 186 023 | 28 53 75 82 1.16
queenl10_10 100 0.59 0 0 0.08
p42 138 0.12 1 1 1 3 0.1
r30 301 0.09 0 0 0.48

Table 1 — Number of vertices removed by the different reduction rules.
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Upper bounds on the score and
the number of colors




New upper bounds on the score and number of colors for WVCP

= [Demange et al., 2007] : A(G) + 1 is an upper-bound on the
number of colors needed to solve P to optimality.

= New upper bounds :

Theorem
Given a WvCP instance P = (G, w) with G = (V, E) and an optimal
solution S* = { V4, ..., Vi} of P corresponding to a partition of V into k

non-empty independent sets, then k <% ., Xx¢, and
f(S*) < ZWEW w X X6, -
With :

= W ={w(v) | v e V} the set of weight values used in G.
= G, = (Vu, E) the subgraph of G induced by weight w.
= Xg, the chromatic number of G, .
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O

kE<xe +xa =3

f(S*)<1lxxg, +3*xc, =5
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colors bounds

score bounds

Instance [V/| density hw | A+1]| Ib ub Ib ub
DSJC125.1g 125 0.1 0.04 24 | 4 14 19 42
DSJC125.5g 125 0.5 0.04 76 | 10 34 42 105
DSJC125.9¢ 125 0.9 0.04 121 | 32 72 124 220
DSJR500.1 244 0.03 0.08 26 | 12 26 166 417
GEOM110 87 0.11 0.11 20 9 20 65 151
inithx.i.1 181 0.05 0.1 169 | 54 78 | 569 800
le450_15a 420 0.08 0.05 99 | 15 61 206 628
le450_25b 345 0.08 0.06 108 | 25 73 307 735
mulsol.i.5 104 0.23 0.18 88 | 31 58 367 574
queenl0_10 100 0.59 0.19 36 | 10 36 | 153 420
p42 135 0.12 0.46 25 | 14 25 | 2466 8108
r30 301 0.09 0.76 35| 19 35 | 9816 104285

Table 2 — Lower and upper bounds on score and colors.
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Three Constraint Programming
Models for WVCP




= P, denotes the problem of determining the existence of a solution to
P that uses a number of colors smaller than or equal to k.

= Solutions to P,; are modeled as maps s : [V/] — K where
K={1,...,k}.

= A total ordering >,, over V is defined which is consistent with the
descending order of weights (v >,, v — w(u) > w(v) for u,v € V).

= A solution is d-sorted if non-empty colors start from rank 1 and are
sorted consistently with the ordering >,, of their dominant vertices.

= Sp_ : set of d-solutions using a number of colors smaller than x.
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Example of d-sorted solution
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Primal model for P,

minimize x° s.t.

x? € {max (w(v)), .,V;/W(v,-)} (P1)
Y, eU:x! ek (P2)
Vke K:xffe2V (P3)
VkeK:xPcU (P4)
INT__SET__CHANNEL([xX |k € K], [x"|v; € U]) (P5)
Vke K :xjyu=k (P6)
V{vi,v;} € E:x! # ij (P7)
Vk € K : xP = min (x}) (P8)
x° = Z w(xP] (P9)
keK
STRICTLY _INCREASING(xP) (P10)
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Experimental Settings

= Intel Xeon ES 2630, 2.66 GHz.
OR-Tools [Perron and Furnon, 2022] solver.

= Heuristics first-fail combined with domain bisection.

= Time limit of 1 hour for each run on a single CPU.
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Primal model results and impact of pre-comput unds

primal primal ub color primal all bounds
instance BKS score  time(s) score  time(s) score  time(s)
DSJC125.1g 23 | 23* 862 | 23* 435 23* 451
DSJC125.5gb 240 270 tl 270 tl 270 tl
DSJC125.5¢ 71 78 tl 78 tl 78 tl
DSJC125.9¢ 169* 176 tl 176 tl 176 tl
DSJR500.1 169 187 tl 177 tl 169 tl
GEOM110 68* 69 tl 68* 1893 68* 1729
inithx.i.1 569* 569 tl 569 tl 569* 54
le450_15a 212 245 tl 234 tl 234 tl
le450_25b 307 307 tl 307 tl 307* 322
mulsol.i.5 367* 367 tl 367 tl 367* 31
queenlO_10 162 170 tl 169 tl 169 tl
p42 2466* 2480 tl 2466 tl 2466* 2908
r30 9816* 9831 tl 9831 tl 9831 tl

nb bks reached 101/188 105/188 107/188

nb optim 72/188 75/188 95/188

Table 3 — Primal model results and impact of pre-computed bounds.
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Compact solutions

= A solution is compact, if the color value of each vertex cannot be
reduced.

= Proposal of an algorithm, gp, , compacting any d-sorted solution
without deteriorating its score.

Theorem

Let P, be a satisfiable WvCP instance. There exists gp. : Sp, — Sp,
such that, for all s € Sp_, gp,.(s) is compact, f(gp, (s)) < f(s) and
gr. (gr.(s)) = gr.(s)-

Corollaries

1. Reduction of the domain of each variable v to
{1,...,min(k,A(v) + 1)}.

2. New global constraint to achieve compactness
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Example of compact solution

= This d-sorted solution is compact since neither v3, v4 nor vs may be
left-shifted.

= If (v3,v4) and (vs, v) were not part of the graph, then vs and v,
could be left-shifted to colors K; and K respectively to compact the

solution.

Ki Kz K3

7] V4

;5\‘;3/3
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Enforcing solution compactness

= Definition : Let y be an integer domain variable and [xi, ..., x,] be
a vector of positive integer domain variables (n > 0).
MAX_LEFT SHIFT(y, [X1,...,Xp]) holds iff
y=ming—1 pr1({k | Vi=1.n:x # k}).

= New global constraint for the primal model :

Vv; € V : MAX_LEFT_SHIFT(x, [xJ-U\vj € N(v))) (P11)
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Implementation of max_left_shift

Decomposition of MAX__LEFT__SHIFT using constraints (M1-M3) with
global constraint NVALUE [Bessiere et al., 2006] :

MAX__LEFT__SHIFT(y, [X1,...,X]) =

Vie{l,...,n}:z€{0,....,n+1} (M1)
Vie{l,...,n}:zi=(y >x) %X x (M2)
NVALUE(y, [0, z1, ..., zy]) (M3)
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Impact of this symmetry breaking rule on the results

primal primal + P11
instance BKS | score time(s) | score time(s)
DSJC125.1¢g 23 | 23* 862 | 23* 628
DSJC125.5¢ 71 78 tl 78 tl
DSJC125.9¢ 169%* 176 tl 176 tl
DSJR500.1 169 187 tl 173 tl
GEOM110 68* 69 tl | 68* 53
inithx.i.1 569* 569 tl 569 tl
le450_15a 212 245 tl 235 tl
le450_25b 307 307 tl 310 tl
mulsol.i.5 367* 367 tl 367 tl
queenl0_10 162 170 tl 170 tl
p42 2466* | 2480 tl | 2480 tl
r30 9816* | 9831 tl | 9831 tl

nb BKS reached 101/188 102/188
nb optim 72/188 76/188 24/30




Dual graph from [Cornaz and Jost, 2008]

vi N\ vy Primal

5 :3 — | 8 Scorep = w(vy) + w(vs) + w(vy) = 12

Dual
Scorep = w(v1) + w(vs) + w(vg) =7
n

Scorep + Scorep = Zw(vz) =19

i=1

= Set of arcs of the dual graph :
EE = {ij | vivi € VA {vi, vy} € EA 20 v}

= Solution in the dual model : a set of simplicial stars that span
disjoint subsets of nodes.
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Dual model for P, - adaptation from [Cornaz et al., 2017]

maximize y° s.t.

Vij € E: yf € {0,1} (D1)
y?e{0,..., > (w(v))} (D2)
v,ieV
yo=>_ w(y) xyf (D3)
ijeE®
Vij, ik € ES s.t. {jk,kiyNES =0 :
yi+yp <1 (D4)
Vij,jk € S yf + v < 1 (D5)
Vhi,ij € ES v+ yf <1 (D6)
Y, e V:zY €{0,1} (D7)
Vv, € T:zV =1— max_(yi) (D8)
(h,i)€E®
Y, e V\T:z" =1 (D9)

Z ziV <k (D].O) 26/30



Joint model

Joint Model = Primal + Dual + J1-J4 channeling constraints.

minimize x° s.t.

Vij € B yf < (x = xY) (J1)
ceo(xP | ke K], V, [V | vie V]) (J2)
x°+y° = Z w(v;) (J3)
v,ieV
Vvie V,vie N(vj) s.t. v; >y v
( N < # ij> =5 < 58! (Ja)
vheN(vi)NN(v))
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Results of the different CP models

primal primal + P11 dual joint + J4
instance BKS | score time(s) | score time(s) | score time(s) | score time(s)
DSJC125.1g 23 23* 862 235 628 26 tl 24 tl
DSJC125.5g 71 78 tl 78 tl 84 tl 78 tl
DSJC125.9g 169* 176 tl 176 tl | 169* 56 169* 380
DSJR500.1 169 187 tl 173 tl 187 tl 186 tl
GEOM110 68* 69 tl 68* 53 73 tl 68* 741
inithx.i.1 569* 569 tl 569 tl 569 tl 569* 1923
le450_15a 212 245 tl 235 tl 250 tl - tl
le450_25b 307 307 tl 310 tl 314 tl - tl
mulsol.i.5 367* 367 tl 367 tl 367 tl 367* 203
queenl0_10 162 170 tl 170 tl 177 tl 172 tl
p42 2466* | 2480 tl | 2480 tl | 2517 tl | 2466* 673
r30 9816* | 9831 tl | 9831 tl | 9831 tl 9831 tl

nb BKS reached 101/188 102/188 79/188 112/188

nb optim 72/188 76,/188 68,/188 100/188

Table 5 — Results of the different cP models.
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New optimality proofs

We ran the CP models with pre-computed bounds during 1h in parallel on

10 threads.
instance [V|  BKS ‘ score  time(s) H instance V| BKS ‘ score  time(s)
DSJC125.1gb 125 90 | 90* 25 || myciel7gb 191 109 | 109* 69
DSJC125.1g 125 23| 23* 11 || myciel7g 191 20 | 29* 241
DSJR500.1 500 169 | 169* 66 || queen9_9g 81 41 | 41* 509
myciel6gb 95 94 | 94% 17 || queen10_10g 100 43 | 43* 820
myciel6g 95 26 | 26* 17 || 1e450 25b 450 307 | 307* 322

Table 6 — New optimality proofs for difficult benchmark instances.
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Conclusion

= |terative reduction procedure and new upper bounds on the score
and the number of colors.
— Reduce the search space.

= Three competitive and complementary CP models.
= 10 new optimality proofs for difficult benchmark instances.

= Future work : investigate possible hybridizations of the cP models
with metaheuristics.
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Thank you for your attention!

Questions ?

technical appendix and source code :

https://github.com/Cyril-Grelier/gc_wvcp_cp

O. Goudet, C. Grelier, D. Lesaint - New Bounds & CP Models for WVCP - 1JCAI 2023


https://github.com/Cyril-Grelier/gc_wvcp_cp

Example of WVCP concrete application

Scheduling on a Batch Machine with Job Compatibilities

% Tobs
T -9 3 Resources
J2 - 8s

J3 - 8s
T4 - 6s -
J5 - 55
J6 - 55
J? - 4s

J% - 2s 2 - Projection of the bipartite grapgh
1 - Prepare the jobs in o onto the resources to 3 - Use the time of each task
bipartite graph (obs - resources) obtain o common needs graph as a weight for each vertex

optimal score =+ %+ 6+2= 25

4 Batchs | Bl ’-’51?: B2 ’-’é?; [B3 - 6s ;'i;lv"-’iéj:—rotal : 255
PT-ast! 119 - 65 1)
% Jobs 1 T3 - %s, 1 T2 - %s,1J6 -55 ,1T% - 2s
1 I5-5s 1) TP -ds
' :
: :

3 Ressources

'
s

4 - Solve the problem by minmizing 5 - Prepare the batiches according to the color of each job
the sum of the maximum weights
of each color
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